تلخيص قصير نظرية الكم والذرة


بواسطة التلميذ(ة):
تلخيص قصير نظرية الكم والذرة

١ مقدمة

أتت نظرية الكم في بدايات القرن العشرين مثل النظرية النسبية لحل إشكاليات لم تستطع الفيزياء الكلاسيكية تفسيرها .

٢ تفسيرات نظرية الكم:

تقوم نظرية الكم بتقديم تصور غريب عن العالم الذري ودون الذري يصدمنا ويبعدنا عن كل ما تعودنا عليه في الواقع الحياتي وما تقدمه الفيزياء الكلاسيكية من تصورات، لكنها بالرغم من كل ذلك تنجح إلى حد بعيد في تفسير حقائق العالم دون الذري وتعزز صحتها يوماً بعد يوم بتقديم تنبؤات غريبة لكن كل التجارب العلمية تأتي فيما بعد لتؤكد صحة هذه التنبؤات، كل هذا أدخل ميكانيكا الكم في عمق نقاشات فلسفية حول طبيعة ما تطرحه ومدى قربه من الحقيقة، حتى أن ميكانيكا الكم طرحت نفس قضية الحقيقة كموضع سؤال، ومن أهم هذه المناقشات والتجارب الفكرية:/ قطة شرودنجر وصديق فاغنر.

لقد قدمت عدة وجهات نظر لتفسير نتائج وإستنتاجات نظرية الكم:/ أول هذه النظريات يعرف بتفسير كوبنهاغن ويعود بشكل أساسي إلى بور وزملائه، الذين يؤكدون أن الطبيعة الاحتمالية لتنبؤات نظرية الكم لا يمكن تفسيرها بأي نظرية حتمية أخرى، وهي صفة أصيلة في الطبيعة التي نعيش بها وليست نتاجا لنقص في المعرفة والمعلومات نعاني منه، باختصار نظرية الكم ذات طبيعة احتمالية لأن الطبيعة ذات طبيعة احتمالية أساساً فما تفعله نظرية الكم هو محاولة وصف قوانين الطبيعة كما هي.

على الطرف الآخر وقف أينشتاين أحد مؤسسي نظرية الكم ليعلن رفضه للاحتمية الكمية التي تنشأ عن احتمالية القياسات، قائلاً (إن الإله لا يلعب النرد)، كانت هذه العبارة الشهيرة بمثابة رفض قاطع لفكرة أن تكون للطبيعة أصالة احتمالية، مرجحاً فكرة أن هناك نقص في المعلومات المتوفرة لدينا يؤدي إلى تلك الطبيعة الاحتمالية للنتائج وعليه فنظرية الكم ناقصة ينبغي إكمالها عن طريق تعويض النقص بالمعلومات وهو ما دعاه بالمتغيرات الخفية فعن طريق هذه المتغيرات يمكن صياغة نظرية كاملة ذات طبيعة حتمية.

ظهرت بعد ذلك بعض التفسيرات التي تضاهي بغرابتها نتائج وتنبؤات الكمية مثل نظرية العوالم المتعددة لايفريت، حيث تقول هذه النظرية بأن جميع الاحتمالات التي تطرحها نظرية الكم تحدث فعلياً في نفس الوقت في عدد من العوالم المستقلة المتوازية، وبالتالي يكون الكون المتشعب حتمياً في حين أن كل كون فرعي لن يكون إلا احتمالياً.

هناك أيضا تفسير بوم يعود إلى ديفيد بوم ويفترض وجود دالة موجية عالمية غير محلية تسمح للجسيمات البعيدة بأن تتفاعل مع بعضها بشكل فوري، اعتماداً على هذا التفسير يحاول بوم أن يؤكد أن الواقع الفيزيائي ليس مجموعة من الجسيمات المنفصلة المتفاعلة مع بعضها كما يظهر لنا بل هو كل واحد غير منقسم ذو طبيعة حركية متغيرة دوماً.

٣ النظرية الذرية:

النظرية الذرية تهتم بدراسة طبيعة المادة، وتنص على أن كل المواد تتكون من ذرات. الاكتشافات اليونانية في عام 430 ق.م توصل الفيلسوف اليونانى (ديموقريطس) إلى مفهوم أو فكرة في كل الأشياء مصنوعة من ذرات أو بالمعنى الحرفى كل الأشياء مكونة من ذرات غير قابلة للانقسام. واعتقد هذا الفيلسوف أن كل الذرات متماثلة وصلبة وغير قابلة للانضغاط إلى جانب أنها غير قابلة للانقسام، وأن الذرات تتحرك بأعداد لا حصر لها في فضاء فارغ.وأن الاختلاف في الشكل والحجم الذرى يحدد الخصائص المختلفة لكل مادة. وطبقاً لفلسفة (ديموقريطس) فإن الذرات ليست المكون الأساسي للمواد فقط ولكنها تكون أيضاً خصائص النفس الإنسانية. فعلى سبيل المثال فإن الآلام تسببها "الذرات الشريرة" وذلك لأن هذه الذرات تكون على شكل (إبر) بينما يتكون اللون الفاتح من الذرات المسطحة ذات الملمس الناعم، وقد اعتقد ديمقريطس واعتقد معه الناس أفكار هي بلا شك تثير تهكمنا الآن ولكنها كانت منذ قرون "العلم الذي لا يبارى". إن النظرية اليونانية عن الذرة لها مدلول تاريخي وفلسفى بالغ الأهمية، إلا أنها ليست ذات قيمة علمية، ذلك أنها لم تقم على أساس ملاحظة الطبيعة أو القياس أو الاختبارات أو التجارب.

٤ مقدمة عامة:

أتت نظرية الكم في بدايات القرن العشرين مثل النظرية النسبية لحل إشكاليات لم تستطع الفيزياء الكلاسيكية تفسيرها، ويمكن تلخيص بعض هذه الإشكاليات في ما يلي:/

  • التناقضات في تصور الفيزياء الكلاسيكية لشكل الذرة في ذلك الوقت:/ ففي بدايات القرن العشرين تم وضع تصور لشكل الذرة مشابه لشكل مجموعتنا الشمسية حيث تتمركز النواة في الوسط وتدور الإلكترونات حولها. غير أنه وبحسب مبادئ الفيزياء الكلاسيكية نفسها فإن الإلكترونات في هذا النموذج ستتعرض لتسارع جذب مركزي نتيجة دورانها حول النواة مما سيؤدي إلى بثها لإشعاع كهرومغناطيسي وهذا بدوره يترتب عليه أن الإلكترونات ستفقد طاقتها شيئا فشيئا وتقترب نتيجة لذلك من النواة حتى تصطدم بها في جزء من الثانية. لذا جاءت الحاجة لنظرية جديدة تعطي نموذجا آخر لتكوين الذرة.
  • تعتبر النظرية الكلاسيكية أيضاً أن ألوان الطيف الذري يجب أن تغطي جميع الأطوال الموجية بنفس الشدة، لكن لاحظ الفيزيائيون أن النتائج التجريبية تناقض ذلك بشدة حيث تصدر الذرات المختلفة أطيافاً (موجات ضوئية) لها أطوال موجية خاصة ومحددة جداً.
  • تنشأ مشكلة أخرى عندما نتأمل إشكالية الجسم الأسود "وهو جسم يمتص كامل الإشعاع الساقط عليه ليعيد إصداره بالكامل مرة أخرى" حيث فشلت كل المحاولات المستندة إلى الفيزياء الإحصائية التقليدية في تفسير منحنى إشعاع الجسم الأسود خصوصاً عند الترددات العالية وهذا ما عرف لاحقاً باسم الكارثة فوق البنفسجية وبهذا ظهر للعلماء أن قوانين الديناميكا الحرارية أصبحت عاجزة عن تفسير هذه الظاهرة.

في عام 1900 اقترح ماكس بلانك حل لتفسير هذه الظاهرة بفكرة ثورية فقد افترض أن الموجات الكهرومغناطيسية لا تصدر بشكل مستمر متصل بل على شكل كميات متقطعة سميت كمات حيث يعتبر الكم أصغر مقدار معين من الطاقة يمكن تبادله بين الأجسام وفق تردد معين وترتبط طاقة الكم بتردد الإشعاع المرافق له:/

{displaystyle E=h u }{displaystyle E=h
u  }

حيث تعبر {displaystyle E}E عن طاقة الكم الصادر، ν عن تردد الإشعاع، {displaystyle h}{displaystyle h} ثابت أصبح يدعى بثابت بلانك.

وبهذا الافتراض تم اعتبار أنه كلما زاد تردد الإشعاع الصادر من الجسم الأسود كلما قلت عدد كمات هذا الإشعاع مما يعني انخفاض شدته بشكل كبير جداً عند الوصول إلى تردد الموجات فوق البنفسجية وبهذا تكون فروض بلانك قد قدمت تفسير مقبول لظاهرة إشعاع الجسم الأسود وفسر ما اعتبرته الفيزياء التقليدية كارثة فوق بنفسجية.

تأتي إشكاليات أخرى من فهم طبيعة الضوء ففي حين يؤكد نيوتن أن طبيعة الضوء جسيمية (فهو مؤلف من جسيمات صغيرة، وتؤيده في ذلك العديد من التجارب، نجد أن توماس يونغ يؤكد أن الضوء ذو طبيعة موجية وتؤكد تجربة شقي يونغ حول تداخل وحيود الضوء هذه الطبيعة الموجية، وفي عام 1924 اقترح لويس دي بروي أن ينظر إلى جسيمات المادة وذراتها أيضا على أنها جسيمات تسلك سلوكا موجياً أحيانا مقترحاً معادلة تشابه معادلة بلانك:/

{displaystyle lambda ={frac {h}{p}}}.

حيث:/ λ, طول الموجة، وp كمية الحركة.

بدأت هنا تتضح ملامح صورة جديدة للعالم تتداخل فيها الطبيعة الجسيمة والطبيعية الموجية للجسيمات الدقيقة بحيث يصعب التمييز بينهما وكان هذا ما مهد الطريق لظهور ميكانيكا الكم عندما وضع نيلز بور نظرية عن تصور تركيب الذرة التي لا تسمح للاندفاع الزاوي بأخذ قيم سوى المضاعفات الصحيحة للقيمة:/

{displaystyle mathbf {L} =ncdot hbar =ncdot {h over 2pi }}

حيث تعبر {displaystyle L}L عن قيم الاندفاع الزاوي، {displaystyle n}n عدد صحيح (3,2,1,...)

وهكذا ظهرت مستويات للطاقة المستقرة يمكن وضع الالكترونات الدائرة فيها مفسرة ثبات التركيب والخطوط الطيفية للذرات، لكن هذا لم يكن سوى البداية. في عام 1927 قام العالم الألماني هايزنبرغ بتقديم مبدأ عدم التأكد الذي ينص على عدم قدرتنا على تحديد موضع وسرعة الجسيمات الكمية بآن واحد وبدقة متناهية. كانت هذه بداية سلسلة من الصدمات التي تلقتها نظرتنا الكلاسيكية للعالم والتي تحطمت معها كل الصورة الميكانيكية الآلية التي سادت حول العالم بعد انتصارات فيزياء نيوتن المدوية في القرنين السابقين. قام هايزنبرغ بصياغة قواعد ميكانيكا الكم بصياغة جبر المصفوفات فيما عرف بعد ذلك بميكانيكا المصفوفات سنة 1926، ظهر شرودنجر بمعادلته الموجية الشهيرة التي تبين تطور دالة موجة الجسيم الكمي مع الزمن وعرفت تلك الصياغة بالميكانيكا الموجية، لكن رغم الاختلاف الظاهري العميق بين الصياغتين فإن نتائجهما كانت متطابقة، هذا ما دفع بول ديراك بعد ذلك لتوحيدهما في إطار شامل عرف بنظرية التحويل. يمكن أن تصل فيزياء الكم إلى تطبيقات كثيرة تبلغ حتى تفسير ظواهر الإدراك البشري وتطبيق النظرية على الأجسام الكبيرة لا سيما بتداخلها مع نظرية الألعاب.

المراجع التي إعتمد عليها التلميذ(ة)

    ١ Wikipedia